If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x^2+60=0
a = -5; b = 0; c = +60;
Δ = b2-4ac
Δ = 02-4·(-5)·60
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{3}}{2*-5}=\frac{0-20\sqrt{3}}{-10} =-\frac{20\sqrt{3}}{-10} =-\frac{2\sqrt{3}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{3}}{2*-5}=\frac{0+20\sqrt{3}}{-10} =\frac{20\sqrt{3}}{-10} =\frac{2\sqrt{3}}{-1} $
| t^2-8.4t+16.24=0 | | -1+3(x+2)=5+40x | | 5=2x/35 | | 16=2b+6 | | 3(x+1)=8(×-2)-1 | | 3x-26=5x-78 | | -1+4x=3+3x | | 7x-(2x+33)=7 | | 16x-23x=7x+64 | | 7=b÷6 | | 80=2L+2(2/3)w | | (d^2-2d+4)=0 | | 4v+6=10+14v-4 | | 180=8z-8+4z+92 | | 33=3t-9 | | (w^2)+w-2=0 | | 3(y+2)=2y+5+y | | 25t^2+210t+406=0 | | 5x2+20=100 | | 16x-10=5(3x+4)-10 | | 2c-4=7c-39 | | (4v^2)-12v=0 | | 16t-14=2(6t+11) | | 2x−3=6x−3 | | (3w^2)+15w=0 | | 94+(x-45)=180 | | 5x-11.4=-0.9x-17.4 | | -.10(46)+0.70x=0.05(x-14) | | 5w+4=2(4w-7) | | 5.25w=-73.5 | | 5.1x-11.4=-6.8+12.7x | | 15+45=4x |